WORST_CASE(?,O(n^2))
* Step 1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
            main(x0) -> eval#1(x0)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1} / {Add/2,Nat/1,Sub/2,Succ/1
            ,Zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1,cond_eval_expr_2,cond_eval_expr_3,eval#1
            ,main} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
          cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
          cond_eval_expr_3#(Zero(),x5) -> c_6()
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          eval#1#(Nat(x4)) -> c_8()
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
          main#(x0) -> c_10(eval#1#(x0))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            cond_eval_expr_3#(Zero(),x5) -> c_6()
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Nat(x4)) -> c_8()
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
            main#(x0) -> c_10(eval#1#(x0))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
            main(x0) -> eval#1(x0)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {6,8}
        by application of
          Pre({6,8}) = {2,3,4,7,9,10}.
        Here rules are labelled as follows:
          1: cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          2: cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
          3: cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          4: cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
          5: cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
          6: cond_eval_expr_3#(Zero(),x5) -> c_6()
          7: eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          8: eval#1#(Nat(x4)) -> c_8()
          9: eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
          10: main#(x0) -> c_10(eval#1#(x0))
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
            main#(x0) -> c_10(eval#1#(x0))
        - Weak DPs:
            cond_eval_expr_3#(Zero(),x5) -> c_6()
            eval#1#(Nat(x4)) -> c_8()
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
            main(x0) -> eval#1(x0)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
             -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
          
          2:S:cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
             -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
             -->_1 eval#1#(Nat(x4)) -> c_8():10
          
          3:S:cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
             -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
             -->_1 cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5)))):5
             -->_2 eval#1#(Nat(x4)) -> c_8():10
             -->_1 cond_eval_expr_3#(Zero(),x5) -> c_6():9
          
          4:S:cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
             -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
             -->_1 eval#1#(Nat(x4)) -> c_8():10
          
          5:S:cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
             -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
          
          6:S:eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
             -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_2 eval#1#(Nat(x4)) -> c_8():10
             -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
             -->_1 cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3)):2
             -->_1 cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3))):1
          
          7:S:eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
             -->_2 eval#1#(Nat(x4)) -> c_8():10
             -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
             -->_1 cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2)):4
             -->_1 cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5)):3
          
          8:S:main#(x0) -> c_10(eval#1#(x0))
             -->_1 eval#1#(Nat(x4)) -> c_8():10
             -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
             -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
          
          9:W:cond_eval_expr_3#(Zero(),x5) -> c_6()
             
          
          10:W:eval#1#(Nat(x4)) -> c_8()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: cond_eval_expr_3#(Zero(),x5) -> c_6()
          10: eval#1#(Nat(x4)) -> c_8()
* Step 4: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
            main#(x0) -> c_10(eval#1#(x0))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
            main(x0) -> eval#1(x0)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
           -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
        
        2:S:cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
           -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
        
        3:S:cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
           -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
           -->_1 cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5)))):5
        
        4:S:cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
           -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
        
        5:S:cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
           -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
        
        6:S:eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
           -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
           -->_1 cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3)):2
           -->_1 cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3))):1
        
        7:S:eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
           -->_2 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_2 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
           -->_1 cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2)):4
           -->_1 cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5)):3
        
        8:S:main#(x0) -> c_10(eval#1#(x0))
           -->_1 eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14)):7
           -->_1 eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10)):6
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(8,main#(x0) -> c_10(eval#1#(x0)))]
* Step 5: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
            main(x0) -> eval#1(x0)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
          cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
          cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
          cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
          cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
          cond_eval_expr_3(Zero(),x5) -> Zero()
          eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
          eval#1(Nat(x4)) -> x4
          eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
          cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
          cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
* Step 6: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          Add :: ["A"(4) x "A"(4)] -(0)-> "A"(4)
          Add :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          Nat :: ["A"(0)] -(0)-> "A"(0)
          Nat :: ["A"(0)] -(0)-> "A"(13)
          Nat :: ["A"(0)] -(0)-> "A"(14)
          Nat :: ["A"(0)] -(0)-> "A"(10)
          Nat :: ["A"(0)] -(0)-> "A"(15)
          Nat :: ["A"(0)] -(0)-> "A"(7)
          Sub :: ["A"(4) x "A"(4)] -(4)-> "A"(4)
          Sub :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          Succ :: ["A"(0)] -(0)-> "A"(0)
          Succ :: ["A"(0)] -(0)-> "A"(3)
          Zero :: [] -(0)-> "A"(0)
          Zero :: [] -(0)-> "A"(7)
          cond_eval_expr_1 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          cond_eval_expr_2 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          cond_eval_expr_3 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          eval#1 :: ["A"(0)] -(0)-> "A"(0)
          cond_eval_expr_1# :: ["A"(0) x "A"(4)] -(0)-> "A"(0)
          cond_eval_expr_2# :: ["A"(0) x "A"(4)] -(4)-> "A"(8)
          cond_eval_expr_3# :: ["A"(0) x "A"(0)] -(4)-> "A"(13)
          eval#1# :: ["A"(4)] -(0)-> "A"(1)
          c_1 :: ["A"(1)] -(0)-> "A"(1)
          c_2 :: ["A"(0)] -(0)-> "A"(12)
          c_3 :: ["A"(0) x "A"(0)] -(0)-> "A"(12)
          c_4 :: ["A"(0)] -(0)-> "A"(12)
          c_5 :: ["A"(0)] -(0)-> "A"(15)
          c_7 :: ["A"(0) x "A"(0)] -(0)-> "A"(12)
          c_9 :: ["A"(1) x "A"(0)] -(0)-> "A"(1)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Add_A" :: ["A"(1) x "A"(1)] -(0)-> "A"(1)
          "Nat_A" :: ["A"(0)] -(0)-> "A"(1)
          "Sub_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1)
          "Succ_A" :: ["A"(0)] -(0)-> "A"(1)
          "Zero_A" :: [] -(0)-> "A"(1)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
        2. Weak:
          cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
* Step 7: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak DPs:
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          Add :: ["A"(2) x "A"(2)] -(2)-> "A"(2)
          Add :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          Nat :: ["A"(0)] -(0)-> "A"(0)
          Nat :: ["A"(0)] -(0)-> "A"(12)
          Nat :: ["A"(0)] -(0)-> "A"(14)
          Nat :: ["A"(0)] -(0)-> "A"(10)
          Nat :: ["A"(0)] -(0)-> "A"(2)
          Nat :: ["A"(0)] -(0)-> "A"(8)
          Nat :: ["A"(0)] -(0)-> "A"(4)
          Sub :: ["A"(2) x "A"(2)] -(0)-> "A"(2)
          Sub :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          Sub :: ["A"(8) x "A"(8)] -(0)-> "A"(8)
          Succ :: ["A"(0)] -(0)-> "A"(0)
          Succ :: ["A"(0)] -(0)-> "A"(2)
          Zero :: [] -(0)-> "A"(0)
          Zero :: [] -(0)-> "A"(15)
          cond_eval_expr_1 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          cond_eval_expr_2 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          cond_eval_expr_3 :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          eval#1 :: ["A"(0)] -(0)-> "A"(0)
          cond_eval_expr_1# :: ["A"(0) x "A"(2)] -(2)-> "A"(2)
          cond_eval_expr_2# :: ["A"(0) x "A"(2)] -(0)-> "A"(1)
          cond_eval_expr_3# :: ["A"(0) x "A"(0)] -(0)-> "A"(9)
          eval#1# :: ["A"(2)] -(0)-> "A"(12)
          c_1 :: ["A"(0)] -(0)-> "A"(10)
          c_2 :: ["A"(0)] -(0)-> "A"(10)
          c_3 :: ["A"(0) x "A"(1)] -(0)-> "A"(1)
          c_4 :: ["A"(0)] -(0)-> "A"(4)
          c_5 :: ["A"(0)] -(0)-> "A"(14)
          c_7 :: ["A"(0) x "A"(0)] -(0)-> "A"(14)
          c_9 :: ["A"(0) x "A"(0)] -(0)-> "A"(12)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Add_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1)
          "Nat_A" :: ["A"(0)] -(0)-> "A"(1)
          "Sub_A" :: ["A"(1) x "A"(1)] -(0)-> "A"(1)
          "Succ_A" :: ["A"(0)] -(0)-> "A"(1)
          "Zero_A" :: [] -(0)-> "A"(1)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(1)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
        2. Weak:
          cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
* Step 8: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak DPs:
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          Add :: ["A"(8, 8) x "A"(8, 8)] -(0)-> "A"(0, 8)
          Add :: ["A"(8, 0) x "A"(8, 0)] -(0)-> "A"(8, 0)
          Nat :: ["A"(8, 0)] -(0)-> "A"(8, 0)
          Nat :: ["A"(8, 0)] -(0)-> "A"(8, 14)
          Nat :: ["A"(8, 0)] -(0)-> "A"(8, 8)
          Nat :: ["A"(8, 0)] -(0)-> "A"(8, 3)
          Nat :: ["A"(8, 0)] -(0)-> "A"(8, 1)
          Sub :: ["A"(8, 8) x "A"(8, 8)] -(0)-> "A"(0, 8)
          Sub :: ["A"(8, 0) x "A"(8, 0)] -(0)-> "A"(8, 0)
          Succ :: ["A"(8, 0)] -(8)-> "A"(8, 0)
          Succ :: ["A"(8, 0)] -(8)-> "A"(8, 10)
          Zero :: [] -(0)-> "A"(8, 0)
          Zero :: [] -(0)-> "A"(8, 8)
          cond_eval_expr_1 :: ["A"(8, 0) x "A"(8, 0)] -(0)-> "A"(8, 0)
          cond_eval_expr_2 :: ["A"(8, 0) x "A"(8, 0)] -(0)-> "A"(8, 0)
          cond_eval_expr_3 :: ["A"(8, 0) x "A"(8, 0)] -(8)-> "A"(8, 0)
          eval#1 :: ["A"(8, 0)] -(0)-> "A"(8, 0)
          cond_eval_expr_1# :: ["A"(8, 0) x "A"(8, 8)] -(0)-> "A"(2, 0)
          cond_eval_expr_2# :: ["A"(8, 0) x "A"(8, 8)] -(0)-> "A"(1, 4)
          cond_eval_expr_3# :: ["A"(8, 0) x "A"(8, 0)] -(4)-> "A"(1, 0)
          eval#1# :: ["A"(0, 8)] -(0)-> "A"(4, 0)
          c_1 :: ["A"(0, 0)] -(0)-> "A"(4, 12)
          c_2 :: ["A"(0, 0)] -(0)-> "A"(3, 0)
          c_3 :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 6)
          c_4 :: ["A"(0, 0)] -(0)-> "A"(12, 14)
          c_5 :: ["A"(0, 0)] -(0)-> "A"(1, 0)
          c_7 :: ["A"(2, 0) x "A"(2, 0)] -(0)-> "A"(4, 2)
          c_9 :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(8, 6)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Add_A" :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 0)
          "Add_A" :: ["A"(1, 1) x "A"(1, 1)] -(0)-> "A"(0, 1)
          "Nat_A" :: ["A"(1, 0)] -(0)-> "A"(1, 0)
          "Nat_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Sub_A" :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 0)
          "Sub_A" :: ["A"(1, 1) x "A"(1, 1)] -(0)-> "A"(0, 1)
          "Succ_A" :: ["A"(1, 0)] -(1)-> "A"(1, 0)
          "Succ_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Zero_A" :: [] -(0)-> "A"(1, 0)
          "Zero_A" :: [] -(0)-> "A"(0, 1)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
          cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
        2. Weak:
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
* Step 9: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          Add :: ["A"(11, 11) x "A"(0, 11)] -(11)-> "A"(0, 11)
          Add :: ["A"(11, 0) x "A"(11, 0)] -(0)-> "A"(11, 0)
          Nat :: ["A"(11, 0)] -(0)-> "A"(11, 0)
          Nat :: ["A"(11, 0)] -(0)-> "A"(11, 14)
          Nat :: ["A"(11, 0)] -(0)-> "A"(11, 1)
          Nat :: ["A"(11, 0)] -(0)-> "A"(11, 12)
          Nat :: ["A"(11, 0)] -(0)-> "A"(11, 11)
          Sub :: ["A"(11, 11) x "A"(11, 11)] -(11)-> "A"(0, 11)
          Sub :: ["A"(11, 0) x "A"(11, 0)] -(11)-> "A"(11, 0)
          Succ :: ["A"(11, 0)] -(11)-> "A"(11, 0)
          Succ :: ["A"(11, 0)] -(11)-> "A"(11, 6)
          Zero :: [] -(0)-> "A"(11, 0)
          Zero :: [] -(0)-> "A"(11, 8)
          cond_eval_expr_1 :: ["A"(11, 0) x "A"(11, 0)] -(0)-> "A"(11, 0)
          cond_eval_expr_2 :: ["A"(11, 0) x "A"(11, 0)] -(0)-> "A"(11, 0)
          cond_eval_expr_3 :: ["A"(11, 0) x "A"(11, 0)] -(7)-> "A"(11, 0)
          eval#1 :: ["A"(11, 0)] -(0)-> "A"(11, 0)
          cond_eval_expr_1# :: ["A"(11, 0) x "A"(0, 11)] -(6)-> "A"(5, 13)
          cond_eval_expr_2# :: ["A"(11, 0) x "A"(11, 11)] -(1)-> "A"(4, 4)
          cond_eval_expr_3# :: ["A"(11, 0) x "A"(11, 0)] -(4)-> "A"(0, 0)
          eval#1# :: ["A"(0, 11)] -(1)-> "A"(14, 0)
          c_1 :: ["A"(0, 0)] -(0)-> "A"(7, 15)
          c_2 :: ["A"(0, 0)] -(0)-> "A"(5, 14)
          c_3 :: ["A"(0, 0) x "A"(10, 0)] -(0)-> "A"(11, 10)
          c_4 :: ["A"(0, 0)] -(0)-> "A"(4, 4)
          c_5 :: ["A"(0, 0)] -(0)-> "A"(0, 0)
          c_7 :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(14, 15)
          c_9 :: ["A"(0, 0) x "A"(0, 0)] -(1)-> "A"(14, 1)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Add_A" :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 0)
          "Add_A" :: ["A"(1, 1) x "A"(0, 1)] -(1)-> "A"(0, 1)
          "Nat_A" :: ["A"(1, 0)] -(0)-> "A"(1, 0)
          "Nat_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Sub_A" :: ["A"(1, 0) x "A"(1, 0)] -(1)-> "A"(1, 0)
          "Sub_A" :: ["A"(1, 1) x "A"(1, 1)] -(1)-> "A"(0, 1)
          "Succ_A" :: ["A"(1, 0)] -(1)-> "A"(1, 0)
          "Succ_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Zero_A" :: [] -(0)-> "A"(1, 0)
          "Zero_A" :: [] -(0)-> "A"(0, 1)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_9_A" :: ["A"(0) x "A"(0)] -(1)-> "A"(0, 1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        2. Weak:
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
* Step 10: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
            eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
        - Weak DPs:
            cond_eval_expr_1#(Succ(x5),x3) -> c_1(eval#1#(Add(Nat(x5),x3)))
            cond_eval_expr_1#(Zero(),x3) -> c_2(eval#1#(x3))
            cond_eval_expr_2#(Zero(),x2) -> c_4(eval#1#(x2))
            cond_eval_expr_3#(Succ(x7),x5) -> c_5(eval#1#(Sub(Nat(x7),Nat(x5))))
            eval#1#(Sub(x8,x14)) -> c_9(cond_eval_expr_2#(eval#1(x14),x8),eval#1#(x14))
        - Weak TRS:
            cond_eval_expr_1(Succ(x5),x3) -> Succ(eval#1(Add(Nat(x5),x3)))
            cond_eval_expr_1(Zero(),x3) -> eval#1(x3)
            cond_eval_expr_2(Succ(x10),x5) -> cond_eval_expr_3(eval#1(x5),x10)
            cond_eval_expr_2(Zero(),x2) -> eval#1(x2)
            cond_eval_expr_3(Succ(x7),x5) -> eval#1(Sub(Nat(x7),Nat(x5)))
            cond_eval_expr_3(Zero(),x5) -> Zero()
            eval#1(Add(x10,x12)) -> cond_eval_expr_1(eval#1(x10),x12)
            eval#1(Nat(x4)) -> x4
            eval#1(Sub(x8,x14)) -> cond_eval_expr_2(eval#1(x14),x8)
        - Signature:
            {cond_eval_expr_1/2,cond_eval_expr_2/2,cond_eval_expr_3/2,eval#1/1,main/1,cond_eval_expr_1#/2
            ,cond_eval_expr_2#/2,cond_eval_expr_3#/2,eval#1#/1,main#/1} / {Add/2,Nat/1,Sub/2,Succ/1,Zero/0,c_1/1,c_2/1
            ,c_3/2,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_eval_expr_1#,cond_eval_expr_2#,cond_eval_expr_3#
            ,eval#1#,main#} and constructors {Add,Nat,Sub,Succ,Zero}
    + Applied Processor:
        Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          Add :: ["A"(3, 3) x "A"(0, 3)] -(3)-> "A"(0, 3)
          Add :: ["A"(3, 0) x "A"(3, 0)] -(0)-> "A"(3, 0)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 0)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 6)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 4)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 2)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 15)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 5)
          Nat :: ["A"(3, 0)] -(0)-> "A"(3, 14)
          Sub :: ["A"(3, 0) x "A"(3, 0)] -(0)-> "A"(3, 0)
          Sub :: ["A"(3, 3) x "A"(3, 3)] -(0)-> "A"(0, 3)
          Succ :: ["A"(3, 0)] -(3)-> "A"(3, 0)
          Zero :: [] -(0)-> "A"(3, 0)
          Zero :: [] -(0)-> "A"(11, 8)
          cond_eval_expr_1 :: ["A"(3, 0) x "A"(3, 0)] -(0)-> "A"(3, 0)
          cond_eval_expr_2 :: ["A"(3, 0) x "A"(3, 0)] -(0)-> "A"(3, 0)
          cond_eval_expr_3 :: ["A"(3, 0) x "A"(3, 0)] -(3)-> "A"(3, 0)
          eval#1 :: ["A"(3, 0)] -(0)-> "A"(3, 0)
          cond_eval_expr_1# :: ["A"(3, 0) x "A"(0, 3)] -(0)-> "A"(1, 3)
          cond_eval_expr_2# :: ["A"(3, 0) x "A"(3, 3)] -(0)-> "A"(1, 1)
          cond_eval_expr_3# :: ["A"(3, 0) x "A"(3, 0)] -(0)-> "A"(5, 1)
          eval#1# :: ["A"(0, 3)] -(0)-> "A"(5, 0)
          c_1 :: ["A"(0, 0)] -(0)-> "A"(4, 14)
          c_2 :: ["A"(3, 0)] -(0)-> "A"(9, 3)
          c_3 :: ["A"(5, 0) x "A"(0, 0)] -(0)-> "A"(3, 2)
          c_4 :: ["A"(0, 0)] -(0)-> "A"(14, 9)
          c_5 :: ["A"(0, 0)] -(0)-> "A"(12, 4)
          c_7 :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(7, 14)
          c_9 :: ["A"(0, 0) x "A"(0, 0)] -(0)-> "A"(14, 2)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "Add_A" :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 0)
          "Add_A" :: ["A"(1, 1) x "A"(0, 1)] -(1)-> "A"(0, 1)
          "Nat_A" :: ["A"(1, 0)] -(0)-> "A"(1, 0)
          "Nat_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Sub_A" :: ["A"(1, 0) x "A"(1, 0)] -(0)-> "A"(1, 0)
          "Sub_A" :: ["A"(1, 1) x "A"(1, 1)] -(0)-> "A"(0, 1)
          "Succ_A" :: ["A"(1, 0)] -(1)-> "A"(1, 0)
          "Succ_A" :: ["A"(0, 0)] -(0)-> "A"(0, 1)
          "Zero_A" :: [] -(0)-> "A"(1, 0)
          "Zero_A" :: [] -(0)-> "A"(0, 1)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_1_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_2_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_3_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_4_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(1, 0)
          "c_5_A" :: ["A"(0)] -(0)-> "A"(0, 1)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_7_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(1, 0)
          "c_9_A" :: ["A"(0) x "A"(0)] -(0)-> "A"(0, 1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          cond_eval_expr_2#(Succ(x10),x5) -> c_3(cond_eval_expr_3#(eval#1(x5),x10),eval#1#(x5))
          eval#1#(Add(x10,x12)) -> c_7(cond_eval_expr_1#(eval#1(x10),x12),eval#1#(x10))
        2. Weak:
          

WORST_CASE(?,O(n^2))